## Disclaimer: ONLINE HW is easier than the notes BUT QUIZ & TEST covers NOTES, CLASSWORK AND HW. REVIEW ALL

Without a calculator, approximate the solution of the following equations

a) 
$$2^{x} = 10^{y} 2^{3} = 8$$

b) 
$$3^{x} = 10^{-1}$$

$$3^2 = 9$$
  $3^3 = 27$ 

For  $x > 0, a > 0, a \neq 1$ ,

$$y = \log_a x$$
 if and only if  $x = a^y$ 

X A log is an exponent producing function. (The answer to a log is an exponent)

The function  $f(x) = \log_a x$  is called a **logarithmic function with base** a.

1) Rewrite each of the following equations in logarithmic form (if possible). If not possible, say why.

a.  $4^{2} = 64$ b.  $5^{2} = 1$ 

a. 
$$4^x = 64$$

b. 
$$5^x = \frac{1}{125}$$

$$C^{*}O^{*}-22$$

$$\log_{5} \frac{1}{125} = x$$

2) Use the definition of a logarithmic function to evaluate each logarithm at the indicated value of x. No calculator

a. 
$$f(x) = \log_4 x, x = 16$$

b. 
$$f(x) = \log_2 x, x = 64$$

c. 
$$f(x) = \log_3 x, x = \frac{1}{81}$$

$$f\left(\frac{1}{8!}\right) = \log_{3} \frac{1}{8!}$$

$$= \frac{1}{8!}$$

$$= \frac{1}{8!}$$
Since  $3^{-4} = \frac{1}{8!}$ 

d. 
$$f(x) = \log_5 x, x = 1$$

d. 
$$f(x) = \log_5 x, x = 1$$
  
 $f(1) = \log_5 1$   
 $f(2) = \log_5 x = 1$ 

3) Use a calculator to evaluate the function given by 
$$f(x) = \log x$$

b. 
$$x = \frac{1}{5}$$

$$d. x = -4$$



## 4) Simplify No calculator

- a.  $\log_5 1 = X$ 5×=1

$$x = \frac{1}{5}$$

g.  $\log \frac{1}{1000}$ 

$$10^{\times} = \frac{1}{1000}$$

- b.  $\log_{\sqrt{11}} \sqrt{11}$

$$5^{\times} = 5^{7/3}$$

$$\times \times 3$$

log x = 1098 30 x = 30

f. log<sub>81</sub> 9

$$\sqrt{81} = 9$$

$$81^{1/2} = 0$$

## 5) Solve No calculator

Check answers - Plug in to make sure not taking log (-)

a. 
$$\log_5 y = \log_5 16$$

b.  $\log(4-3x) = \log(x+2)$ 

$$4 - 3x = x + 2$$

$$\left[\frac{1}{2} = X\right]$$

c. 
$$\log_3(x^2 + 4) = \log_3 29$$

$$\chi^2 + 4 = 29$$

To sketch the graph of  $y = \log_a x$ , use the fact that the graphs of inverse functions are reflections of each other in the line y=x ( the x and y variables are interchanged).  $y = \log_a x$  and  $y = a^x$  are inverses of each other.

6) On the same coordinate plane, sketch the graph of each function

| a) $f(x) = 4^x$<br>b) $g(x) = \log_4 x$                                                                       | ×                    | 9  |
|---------------------------------------------------------------------------------------------------------------|----------------------|----|
| • Construct a table of values for $f(x)$ No calculator $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1/64                 | -3 |
| $R(0, \infty)$ HA $y = 0$                                                                                     | 1/4<br>1<br>4<br>119 | 0  |

• Since  $g(x) = \log_4 x$  is the inverse of  $f(x) = 4^x$  the graph of  $g(x) = \log_4 x$  is obtained by interchanging the x and y variables of  $f(x) = 4^x$ . In other words, plot the points (f(x), x)

